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SUMMARY

-f-- Many different authors have claimed that the loglinear model approach to the analysis of

contingency table data is appropriate only for nominal variables and does not make use of

information on the ordinal nature of some categorical variables (i.e. the ordering of the categories).

4rhspaper, A4~ reviewr a variety of loglinear model methods which do take into account, either

explicitly or implicitly, such information on ordering. '~r focus is on methods involving maximum

likelihood estimation, but other methods of estimation can be used with these models. We also

Sconmid brief ome additional models for ordered categorical data. /1. e (0.' iP/' :e.

KEY WORDS: Categorical data.; Loglinear models; Maximum likelihood estimates: Multidimensional

contingency tables; Ordered categories; Ordinal variables.
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1. INTRODUCTION

Following important theoretical work by Birch. Bishop, Goodman and others in the 1960's, there

has been a resurgence of interest in the analysis of categorical data, especially in the form of

multidimensional cross-classifications or contingency tables. Much of this recent literature has

focussed on the use of loglinear models for tables of expected values, and detailed descriptions of

maximum likelihood estimation methods for loglinear model analysis can now be found in numerous

books (e.g. see BISHOP, FIENBERG, and HOLLAND (1975) and FIENBERG (1980)). It has been

implied or even explicitly suggested by many authors that the use of these loglinear models is

' inappropriate when one or more of the variables involved is ordinal. i.e. has categories which have

an ordered structure. The purpose of this paper is to demonstrate that these criticisms of loglinear

model approaches to the analysis of categorical data are false.

For example, McCULLAGH (1980) has claimed that a general property of all loglinear models that

do not use scores (see section 2 for a description of such models) is that they are permutation

invariant, i.e. that the categories of variables can be permuted in an arbitrary way without affecting

the fit or values of the parameters. In fact. the ordinal nature of some categorical variables is

often crucial to the structural organization of categorical data subjected to loglinear analysis, as in

triangular arrays (e.g.. see BISHOP and FIENBERG (1969) or BISHOP, FIENBERG, and HOLLAND

(1975), Chapter 5), and social mobility tables (e.g., see social mobility tables GOODMAN (1972,

1979a) or BISHOP, FIENBERG, and HOLLAND (1975), Chapters 5 and 9), and age-period-cohort

structures (FIENBERG and MASON (1978)). The fit of loglinear models to these and other

structures is not permutation invariant.

For our discussion here we distinguish between response and explanatory variables (see FIENBERG

(1980). Chapter 1), and describe in Sections 2 and 3 some simple and direct loglinear model

approaches which explicitly take into account the ordinal structure of explanatory and response

variables, respectively. Then we turn, in Section 4, to a special class of nonlinear extensions to

lo$1inear models where the ordering of categories lends a simple interpretation of interaction terms.
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Finally, in Section 5, we mention several other approaches to the analysis of ordinal data that are

related in some ways to loglinear model methods.

" In addition to the formal use of ordering in the loglinear models mentioned above, and described

in later sections, we should not lose sight of the fact that information on ordering of categories can

be used in informal ways as well (e.g. see FIENBERG (1980), Chapter 3, p.46).

2. SCORES FOR ORDINAL EXPLANATORY VARIABLES

SIMON (1974), HABERMAN (1974), and FIENBERG (1980) describe a loglinear model approach in

the case where one or more variables are ordinal, and the categories of these variables have

preassigned scores. We consider one such model here in case of a 2 X J X K table, with variable 1

being a binary response variable and variables 2 and 3 being explanatory variables with ordered

categories, the scores for which are Wv21) and {v)), respectively. We begin with the loglinear
j k

model

log mijk =u + UI(U(j)u + u3(k) +u 12(ij) + u (ik)(j) U 2 3 (ijk). (2.1)

Next we assume that the two-factor effects relating the explanatory variables to the response variable

reflect the ordering given by the following restrictions:

u 12(.) = (v!2) - (2))u (2  (2.2)
and

(v 3 )u<3 . (2.3)
U 3(ik) 1(i)

The usual hierarchical restriction on "ordered effects" then implies that, for the 2nd-order interaction

terms,

2)= )- )(v( )u (2.4)Ul. 3(ijk) k I - (i)

The terms u ~ u2) u ( ) and u(231 may all be different.The erm u~), (i)' 1i)' 10i)

If we substitute for expressions (2.2), (2.3), and (2.4) in (2.1), and reexpress the model in terms of

logits, we get

ii ,. . ,.: .::.:-: -.,... -:. .:- .. ,. ...... ..-..-. . .....- .., ...-.-...-.- - .. . -' :-:.- ... ... ..- :.- .,.... -: -:,
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l9it = log - bo + b v 2 + b3 v + b V2 !V 3'k (2.5)
jk In 0k 23 jkm2jk

1)where b2  3 2u22 2). b2 3 = 2u3). and b0 = 2u1( - b2v'
2 ) - b - b 23 Expression1- 1)' 3 u 2'b3 uii'= un

(2.5) is a logistic regression model with an interaction term involving the two sets of scores. The

key to this model is the use of the scores (v(-)} and Iv ) to induce metrics for the two
j k

explanatory variables.

The likelihood equations for model (2.5) follow the standard structure for loglinear models, and are

found by setting sufficient statistics equal to their expected values. These equations can be solved

using one of a number of standard numerical techniques.

KThe method suggested here for 2 x J x K tables can be extended to more explanatory variables,

*: and can be used when some predictor variables are nominal and others are categorical. It can even

be used in cases where the response variables are ordinal and have pre-specified scores associated

with them.

When pre-specified scores are not available, it may make sense to attempt to estimate the scores

for one or more variables so as to optimize some criterion function. NISHISATO (1980) gives a

detailed description of one such approach known as dual scaling. This approach is known in France

under the name /'analyse des correspondances (correspondence analysis) and has been developed by

Benzecri and his associates (BENZECRI, 1973). Nothing in the description of this section requires

that the pre-assigned scores have an ordering that goes with the ordering of the categories of the

corresponding variable, although in practice this will almost always be the case. NISHISATO (1980,

Chapter 8) describes a dual-scaling approach to ensure order restrictions on the scores, which

involves a version of the "pool-adjacent-violators" algorithm used in many other applications

(BARLOW, BARTHOLOMEW, BREMMER. and BRUNK, 1972).

L ;- : . -o - , . , • . , . . . . . . - . • - - . - . - . . . • .. . . . . - - - . .- , .. . . . ..
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3. CONTINUATION RATIOS FOR AN ORDINAL RESPONSE VARIABLE

Suppose we have a single I-category ordinal response variable and a pair of explanatory variables

(with J and K categories respectively). The general loglinear model given by expression (2.1). can be

rewritten as a set of I-1 simultaneous logit models, e.g. for log (m, /m ) for i = 1.2,...I-1, but this
ijk lIk

model does not reflect the ordinal nature of the response variable. A natural alternative to (2.1) and

the resulting simultaneous logit models is to focus on continuation ratios of the form
ihik

M mijk/ h>imn jk i( , ...II 3.1)

or
mi/Ih(.mt i = 2,3 .... I. (3.2)

Logit-like models for these continuation ratios can then be modelled separately because the likelihood

function is a product of 1-1 components, one for each continuation ratio.

*- A set of I-I logit models for the continuation ratios may treat the explanatory variables

differently in each of the I-1 equations, and thus the "effects of the ordered structure" are allowed

to come through. FIENBERG (1980) gives an example of this approach with three explanatory

variables, and illustrates that modelling a data-set with continuation-ratios going in one direction, as

in expression (3.1), will not necessarily yield the same results as modelling those going in the other

direction, as in expression (3.2).

The continuation-ratio approach suggested in this Section can be combined with methods for

treating explanatory variables as ordinal, such as those described in Section 2. For example,

FIENBERG and MASON (1978) use the continuation-ratio approach to analyze educational attainment

K in the U.S. by developing logit models with simultaneous effects for age, period, and cohort.

[i  Although the "combined model," merging together the I-1 logit models for the continuation ratios,

is not itself loglinear, it can be fit by standard maximum likelihood methods for loglinear or logit

models applied separately to each of the logit models. As McCULLAGH (1980) notes, this approach

is especially well-suited to problems where the response variables are discrete, and where it is unwise

to try to treat them as course groupings of some finer scale.
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4. SOME NONLINEAR EXTENSIONS OF LOGLINEAR MODELS

" Again let us consider a 2 X J X K table where variable 1 represents a binary response, and

variables 2 and 3 are explanatory. If we begin with the logit model of expression (2.1), and assume

that only the 2nd-order interaction term depends on the pre-assigned scores, as in (2.4), then we

have the linear logit model

In" log w + w + w + b Vvv (4.1)
m 2j /  j) 31k) 23 j k

If v(2) is proportional to j and v(3) is proportional to k, expression (4.1) is a logit generalization of
J IC

what GOODMAN (1979b) refers to as the uniform association model. Next suppose we do not have

pre-assigned scores, and thus wish to estimate (v (2)
) and I V(3)). To ensure the identifiability of

these new parameters in the model, we need two constraints such as
I (v(2 )2 = (v (3 )2 = 0 (4.2)

j J k

in addition to the usual ANOVA constraints. This model is a linear logit model generalization of a

model suggested for use in two-way tables by FIENBERG (1968), and studied in detail by

GOODMAN (1979b). When b23 - 0, (4.1) reduces to the usual no 2nd-order interaction model.

When the iv12 ) are proportional to {w I and the 10)) are proportional to (w 1 , then we can
J 2(j) k 3(k)

dispose of the added constraint (4.2), and we get a nonlinear logit version of Tukey's I degree of

freedom model for nonadditivity:

lo M =W+w +w + WW . (4.3)

lj2 ( 3 w j 
2 (j ) 3 (k

CHUANG (1980) gives details on the maximum likelihood estimation of parameters for both (4.1)

and (4.3).

*Note that both models (4.1) and (4.3) are invariant under changes of row and column orderings.

But, as AGRESTI (1982) notes, there is a simple interpretation of the model when the (v(2 )) and

{v1') in model (4.1) are monotonic. Suppose that v(2' < v12 1 < ... V(21. Then, if v(3) > v(3) the log-
k I 2 J " k k

odds for being in category 1 of the response variable are always greater for those observations for
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which variable 3 takes the value k, then those for which variable 3 takes the value k1. Agresti

suggests that, when we expect such stochastic orderings as a result of the ordinal structure of

variables, we should add the appropriate inequality constraints to the model, although he does not

explain how to get maximum likelihood estimates in those cases. Once the ordering is required we

lose most of the invariance in the model, and are left with only palindromic invariance

(McCULLAGH, 1978), associated with completely reversing the categories of the ordered variables.

As in the case of the models of Sections 2 and 3, we can readily generalize the models to more

than two explanatory variables, and to mixtures of nominal and ordinal explanatory variables.

Moreover, we can use such models, when the response variable is polytomous but ordinal, for

* continuation ratios of the sort described in Section 3. Finally, we can use the same type of model

structure for multiple, polytomous ordinal response variables, expressing the parameters of interest as

functions of the effects of explanatory variables.

5. OTHER METHODS

In this review, we have focussed on models that either are loglinear in nature, or involve natural

extensions to loglinear models. Many alternative approaches .ire available. McCULLAGH (1980). for

example, develops models for ordinal response variables which replaces the log odds of either version

of the continuation ratio (expressions (3.1) or (3.2)) by the "accumulated" logit

log [xh~m hjk / I h>i J. (5.1)

Then he models these accumulated logits using linear models. This approach typically yields a

stochastic ordering of response variables, and the same model is then applicable when categories of

the response variable are collapsed. Unfortunately, the accumulated logits cannot be analyzed

independently, and thus McCullagh's approach is likely to lead to computation problems when the

table being analyzed is large. As McCullagh notes. (5.1) can easily be generalized through the use of

Fi .a "link" function other than the logit.

Yet another way to approach information on orderings is to incorporate it into the modelling in

K. • .
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the form of order restrictions. BARLOW, BARTHOLOMEW, BREMNER, AND BRUNK (1972)

describe several results related to binomial and multinomial problems. Most of this and subsequent

literature focusses on maximum likelihood estimation when there is a stochastic order restriction on

the probabilities themselves. EDDY, FIENBERG, and MEYER (1982) have developed a new

approach wherein the order restrictions implied by the ordinal categorical variables are placed on

marginal totals of the cross-classification. There appears to be an interesting link between this

approach and ideas associated with loglinear models.

The preparation of this paper was supported in part by the Office of Naval Research under

Contract N00014-80-C-0637.

* 6. REFERENCES

AGRESTI, A., A survey of strategies for modelling cross-classifications having ordinal variables,
Unpublished manuscript, 1982.

BARLOW, R.E., BARTHOLOMEW, D.J., BREMNER, J.M., and BRUNK, H.D.. Statistical inference
under order restrictions: The theory and application of isotonicregression, Wiley, New York, 1972.

BENZECRI. J.-P., L'analyse des correspondances (Volume 2 of L'analyse des donnees), Dunod, Paris.
1973 (in French).

BISHOP, Y.M.M. and FIENBERG, S.E., Incomplete two-dimensional contingency tables, Biometrics,
25, 119-128, 1969.

BISHOP. Y.M.M., FIENBERO, S.E., and HOLLAND, P.W., Discrete multivariate analysis: Theory and
practice, MIT Press, Cambridge, Mass., 1975.

CHUANG, J.-L.C., Analysis of categorical data with ordered categories, Ph.D. Dissertation, School of
Statistics, University of Minnesota, 1980.

EDDY, Win. F., FIENBERG, S.E., and MEYER, M.M., Contingency table estimation with order
restrictions on the margins, Unpublished manuscript, 1982.

FIENBERG, S.E., The estimation of cell probabilities in two-way contingency tables. Ph.D.
Dissertation. Department of Statistics, Harvard University, 1968.

FIENBERG, S.E., The analysis of cross-classified categorical data (2nd edition). MIT Press,
Cambridge, Mass., 1980.

FIENBERG. S.E. and MASON, W., Identification and estimation of age, period and cohort models in
the analysis of discrete archival data, Sociological Methodology 1979, 1-67, 1978.

GOODMAN, LA., Some multiplicative models for the analysis of cross-classified data, Proc. 6th
Berkeley Symp. Math. Statist. Prob., 1. 649-696. 1972.

GOODMAN. L.A., Multiplicative models for square contingency tables with ordered categories,
Biometrika, , 413-418, 1979a.



9

GOODMAN, L.A., Simple models -. r the analysis of association in cross-classifications having
ordered categories, J. Amer. Statist. Ass., 14, 537-552, 1979b.

HABERMAN, S.J., Log-linear models for frequency tables with ordered classifications, Biometrics, 30,
589-600, 1974.

McCULLAGH, P., A class of parametric models for the analysis of square contingency tables with
ordered categories, Biometrika, 65. 413-418, 1978.

McCULLAGH, P., Regression models for ordinal data (with discussion), J. Roy. Statist. Soc. (B), 42,
109-142, 1980.

NISHISATO. S., Analysis of categorical data: Dual scaling and its applications, University of Toronto
Press, Toronto, 1980.

SIMON, G., Alternative analyses for the singly ordered contingency table, J. Amer. Statist. Ass., 69.
971-976, 1974.

I

i



SECURITY CLASSIFICATION OF THIS PAGE (Whon De$ Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPL T NG FORM
1REPORT NUMBER 2. 6 VT AC ESSIOtLN 13. RECIPIENT'S CATALOG NUM13ER

Technical Report #255 _

4. TITLE (id Subtitle) S. TYPE OF REPORT a PERIOD COVERED

Using Information on Ordering for Loglinear
L Model Analysis of Multidimensional Contingency

Tables 6. PERFORMING OR5. REPORT NUmBER

7. AUTmOR(a) 6. CONTRACT OR GRANT NUMBER(*)

Stephen E. Fienberg N00014-80-C-0637

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PqOJEC" TASK

Department of Statistics AREA h *O1K UNIT NumBERS

Carnegie-Mellon University
Pittsburgh, PA 15213

SII. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Contracts Office June, 1982
Carnegie-Mellon University 13. NUMBER OF PAGES

Pittsburgh, PA 15213 9
14. MONITORING AGENCY NAME & AODRESS(If diferent froim Controlling Olfice) 15. SECURITY CLASS. (c! this report)

I Unclassified
ISO. OECLASSIICATION. DOWNGRADING

SCHEDULE

16. OISTRIUUTION STATEMENT (at Chia Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (o the abstract entered In Block 20. It different from Report)

II. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rever** ide II Iecessary aid Identity by block number)

Categorical data; Loglinear models; Maximum likelihood estimates;
Multidimensional contingency tables; Ordered categories; Ordinal variables.

20. A.S1 RACT (Continue an reverie side It neceeeury and Identify by block number)
Many different authors have claimed that the loglinear model approach

to the analysis of contingency table data is appropriate only for nominal
variables and does not make use of information on the ordinal nature of some

categorical variables (i.e. the ordering of the categories). In this paper,
we review a variety of loglinear model methods which do take into account,
either explicitly or implicitly, such information on ordering. Our focus is
on methods involving maximum likelihood estimation, but other methods of
estimation can be used with these models. We also consider briefly, some

DI JAN 71 1473 EDITION m els ,or ordered categorcal data.,},,II JN ? J4 OITON F NV IS OBSOLETE

-F 3 '.6 1" SEC..ll Y CL ASSIrICA'ICN !3 ' P: #a * 5 .f.N.. .te ..


